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A model of a wheel with a reinforced tyre, whose surface is simulated by a flexible strip (tread) attached to parts of two tori (the 
sidewalls of the tyre) is considered. The disk of the wheel (a rigid body) has six degrees of freedom and is in contact with the 
plane along part of the tread. Based on several assumptions, the potential energy functional of the deformed wheel is found as 
a function of the deformations of the centre line of the tread. On the assumption that the wheel is rolling without slip in the 
region of contact of the tread with the plane along a previously unknown section of the tread, the complete system of equations 
of motion is obtained. The equilibrium of the wheel and the steady state of rolling in a straight line with given swivel and tilt are 
investigated, and all characteristics of the motion are found (the contact region, the tyre deformation, and the forces and torques 
applied to the wheel disk). © 2002 Elsevier Science Ltd. All rights reserved. 

There are several well-known models for a tyre whose deformations are described by a finite number 
of parameters, such as the displacement and rotation of the load surface [1-4]. The dynamic effects 
due to deformation of the tyre over its entire surface can be described in the context of models with 
an infinite number of degrees of freedom [5, 6]. Metelitsyn [7] has suggested modelling the tyre surface 
by part of the surface of a torus, but then goes on to reduce the deformations to displacement of the 
load curve along the wheel axis, taking the force and torque to be proportional to this displacement 
and its derivative with respect to natural parameter at the contact point. B6hm [5] proposes modelling 
a pneumatic tyre by a curved beam attached to a disk by continuously distributed elastic forces. Tyres 
have also been simulated [6] by a tread (a flexible inextensible thread) attached to sidewalls (parts of 
the surface of a torus), with the assumption that the middle plane of the wheel disk is orthogonal to 
the plane of rolling. There are a good many publications investigating tyre deformations by the finite- 
element method (e.g., [8, 9]). Unlike those publications, in this paper we propose a wheel model in 
which the disk has six degrees of freedom, the tread is represented by a flexible inextensible strip, and 
the sidewalls are simulated by parts of the surfaces of two tori; this model enables the rolling of the 
wheel to be investigated most completely. 

1. T H E  M O D E L  O F  A W H E E L  W I T H  A R E I N F O R C E D  T Y R E  

Let the wheel consist of a disk (0), two tyre sidewalls (1, 2), and a tread (3), represented in the 
undeformed state by a cylindrical surface of radius r. The wheel disk will be treated as a rigid body, 
whose position is determined by six degrees of freedom, and the tyre sidewalls in the undeformed 
state will be defined as two parts of toroidal surfaces (Fig. 1). Let OXIXzX3 be an inertial system 
of coordinates and let Cxyz be a system of coordinates attached to the disk. The tread surface is 
defined by 

R3(~o,~,t) = ~ X~I i + rF3(I])FI (~)F~ (0 + ~o)[(I + U,)e, +(Ir-'~ + U2)e 2 + U3e3] 
~=I 

Ii! ° °If ICo  ° F:(×)= cos× - s i n × ,  F2(0)= 1 

sin× cos×n II-sinO 0 cos0 

(1.:) 
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where X1, X2 and )(3 are the coordinates of the mass centre of the disk C, 13, × and 0 are the angles of 
successive rotations of the fixed system of coordinates about the corresponding axes on transferring to 
the system Cxyz, I i is a unit vector on the axis OXi, Uk(~, tp, t) (k = 1, 2, 3) are the components of the 
displacement vector of a point of the tread in a system of coordinates Cx'y'z" whose unit vectors are 
denoted by ek, and 2/is the tread width. We will assume that the tyre is reinforced in the zone of the 
tread so that a fibre passes through each point in the direction of e2 and two fibres in the directions 
cos l e2 ± sin y e3 (the angle y is constant). Assuming that the steel fibres of the cord are inextensible, 
we obtain the equalities 

aR~ cosy ~.R3 + sin aR3 1 I 
which are equivalent to the equalities 

3 2 a(.)  I t- 'R;l=, ~ 21r-lU~ +k:IT'U; =0; (.)°= a,~ 

[t-'R;[ = i = 2 (v , -  v;)+ ( v , -  u;)2 + 2 +(v; +v , )  2 --0 

R.~(-)R~ = 0 =:::~ Uf(U; +U3)+(lr-' +U~)U~-U~(I+U,- U~) = 0; 
a(.) 

(.) '= 
a~ 

(1.2) 

Henceforth we shall assume that the functions Uk and their derivatives are small; neglecting their 
squares, we obtain the following equalities from (1.2) 

U~ = O, U~ = U t, lr-'U~ = U 3 (1.3) 

Denoting the displacements of the centre line 10 of the tread, corresponding to ~ --- 0, by u(qo, t)el + 
w(% t)e 2 - v(q), t)e 3, and solving system of equations (1.3), we obtain 

Ut=lr-I~w"+u, U2=w, U3=lr-l~w'-v, u = - v '  (1.4) 

Let us consider the case in which the wheel is rolling over the plane 0)(i)(,_. In the contact region, 
a part of the tread coincides with the plane OX~X2 and is at rest. It follows from conditions (1.2) in the 
contact region that there are two orthogonal families of straight lines corresponding to constant values 
of one of the variables ~o or ~ in formula (1.1). By formulae (1.4), the shape of the tread in the deformed 
state is close to that of a ruled surface, and we may assume that the contact region of the tyre with the 
plane is a rectangle. Let the contact of the tread correspond to values of the angle q) in the range 
L1 = [qol(t), cP2(t)]. Then 
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R 3 ( q ~ , ~ , t ) = - r ( q ~ - ~ / 2 ) l  I+ /~I  2, q )EL I, I~[ <~ I (1.5) 

In this relation, without  loss of  generality, we have adopted  the convent ion that the wheel is rolling 
along the OXz axis, its centre  line 10 coinciding with that axis. In view of  (1.1), it follows from (1.5) that 

U I = u + lr-t~(cos Osin 13 + sin Osin × cos~) 

U 2 = w +/r- l~(cos × cos13 - I) 

U 3 = - v  + lr-t~(sin O sin 1~ - cos ,,~ sin × cos 9) 

u = ( n / 2 -  X l r - ' -  q~)(cosl3cos'O- sin [3sin × sin O) + 

+X3r -I sin d cos × - r -I X 2 (cos 0 sin 13 + sin t~ sin × cos [3) - 1 

w = - ( ~ / 2  - X i r - '  - cp)sinl3cos × - X3 r-t  sin × - r- tX2 cos × cos~ 

v = - ( n / 2  - Xir  -I - cp)(cos[3sin O + sinl3sin × cos O) + X3r -l cos Ocos× + 

+ r - l X 2 ( s i n a g s i n ~ - c o s O s i n × c o s [ 3 ) ;  0 =0+~0 

(1.6) 

By (1.4) and (1.6), the relative displacements of  the points of  the tread in the contact  region are 
de te rmined  by X~, X2, X3, 13, ×, 0 as functions of  time, but outside the contact  region these variables 
depend on the functions v and w. If we assume ~ = 0 in Eqs (1.6), the displacements obtained will 
cor respond to points of  the centre  line of  the tread. 

We will define the sidewalls (1) and (2) of  the tyre in the deformed  state in the form 

3 { 
Rj(~0,~, t )=  Y,X,I, +F3(I3)Fj(×)F2(O)x (-I  

t=l 

[ 3 ] }  
)Jae 2 +ce!  + bl-'3(~!/) nl + Z Vt~q, (1.7) 

t=l 

• ~ l ,  u I 2 ,  / , = [ V , , V 2 ] ,  / 2 = [ - ~ 2 , - t l t l ] ,  j = l , 2  

where V~(~0, ~, t) (i = 1, 2, 3) are the components  of  the vector  of  relative displacements of  points on 
the sidewalls in a toroidal  system of  coordinates  M'q]rl2r}3 (Fig. 2), and a, b and c are constants. The  
in te rva l / / co r responds  to the sidewall (j). In a radial tyre, the sidewalls are reinforced by inextensible 
steel fibres, corresponding in R / t o  a constant  angle ~O, whose curvature will be assumed constant for  
each fibre under  internal pressure in the tyre [6]. These  conditions are expressed by the following 
equalities 

b vl= J + +(v, - v2 +v 2 = 0  

bb~ll21- C(~p,t) ~ VI - V I - = 
a(.) 

av (1.8) 

Assuming that the functions and derivatives in formulae (1.8) are small and neglecting their squares, 
we obtain a linear system of  differential equat ions 

V2+Vf=O, Vj'-V, +2V2 = 0  

whose general solution is 

V, = - c  2 + c 3 sin ~g - c4 cos ~g, V 2 = c, + c2~ + c 3 cos V + c4 sin ~g (1.9) 

where the coefficients ck(~P, t) (k = 1 . . . . .  4) must be de termined  from the boundary  conditions 
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• = ± ~ 2  : v~ = v2 = 0  

W=+Wj: V j = U l + c o s ~ l ± U 2 ± s i n ~ l ,  V 2 = - T - U j ± s i n W l + U 2 + c o s W j  

Uk+ - = Uk(±l,~p,t ) 

As a result, we obtain two systems of linear algebraic equations, whose solution we will express in 
the form 

ck = r_.(__X l(-[u+tr-iw"+ yli, l)]fk -[w+ Y2(i)]g,), W~ll ( I .10)  

bA [<_l)k.t([u_ir-lw + yl(_l)]fk_[w+ y2(_l)]gk) ' llt~12 

k=l ..... 4 

fl = W 2 c o s W 2 - W l c o s W I + g 2 ,  f 2 = c ° s w t - c ° s w 2  

s .  = s i . ( v 2  - v , ) -  ( v 2  - v , ) c o s  v ,  c o s v 2  

: ,  = ~ - ( v 2  - v , ) c o s  v ,  s i .  v2  - cos(v~  - v , )  

gl = W2 sin W2 - WI sin WI - f2, g2 = sin WI - sin W2 

g.  = - I  + cos (v~  - V , ) -  (V~ - Vl )sin Vl c o s y 2  

S.  = ~i.(V~ - V , ) - ( V ~  - V,)~i,,  V, si,, V~ 

a = 2 -  2 cos (v~  - ~ , , ) -  (v~  - v , ) s i , ( v ~  - v , )  

where Yl(~), Y2(~) are additional terms, quadratic in u, v, w and their derivatives, obtained when the 
functions U1 and (/2 are determined from conditions (1.2). These terms, to be determined below, turn 
out to be necessary when calculating the work done by the pressure in the virtual displacements. 

The function V3(tp, ¥,  t) may be represented approximately by the first two terms in its Taylor series 
in the neighbourhood of the points W = +_ W2 

r 

V3 =-b×[(_ir_lw. I) )[I+(W + WI~IIt2 _Iltl)_,] ' W~ I2 (I.II) 
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Let us determine the work done by the pressure to effect the virtual displacements in deformations 
of the sidewalls and the tread. We have 

3 I 2x 
Z A,, I[R;×R;]SR:,aip, 
k=l -1 0 

2~t. • 
6ak=pl I[RkxRi,]fR~a~dip, k= l ,2  

/ k 0 

(1.12) 

where p is the pressure in the tyre; as shown previously [6], when computing the work of the pressure 
in (1.12), it may be assumed to be constant, to within terms of the second order of smallness inclusive. 
For the tread, we obtain from (1.12) 

I 2n 

BA, = plr 2 1 I [~V, -rl-'U;SU2 +(U: + U3)6U3]d~I p 
- I  0 

(1.13) 

To evaluate the integral with respect to ~, we must use formulae (1.4) and find the quadratic correction 
to the function U. Denoting the quadratic corrections to the functions defined in (1.4) byyk and using 
Eqs (1.2), we obtain 

Yl =-Iw'2-1[lr-I~(w'"+w')+u'-°]22 + Y3," 

(1.14) 
=-l~(w"Z +w'2) , y3=l~(u'-u) w'" 

Y2 2r ~ r 

After integration of the integrand in (1.13) with respect to { and a few terms also with respect to Ip, we 
obtain, using (1.4) and (1.14), 

2~f 12 ] 
8A3 = -6I-I3 = -2P lr2 I I~-y(w'" + w')~w"" +(u'-u )Su" dip 

o L 3r (1.15) 
2Tt[- 12 ] 
! [ 7 I :  - 

According to relations (1.12), the work done by the pressure in deforming the sidewalls, to within 
terms of the second order of smallness inclusive in the functions V1, V2, V3 and their derivatives, is as 
follows: 

o t~L ~,b 

-6V2( b+COS~)(V( - V2)+6V3(V(+ V3cosw)]dipd ¥, k = l , 2  (1.16, 

Let us find the quadratic correction to the function I"i, with an eye to retaining in (1.16) terms of 
the second order of smallness, inclusive. Replacing Vk in (1.8) by Vk + zk, where zk are the terms of the 
second order of smallness, and taking (1.9) into account, we obtain the equalities 

2(z,- zi+ 2z )÷ 4 +(c, + c:,)2:0 
(1.17) 

The quantities cl and c2 are represented by equalities (1.10), assuming that Yl,2(--+ 1) are not included, 
since their contribution to (1.17) consists of terms small to the order of three or more. In addition, the 
derivation of (1.17) took into account the fact that 1 + c2 = b2C 2 for terms of the first order of smallness. 
As a result we deduce from (1.17) that 
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z i +  z, = - v / - ( c ,  +c2v) 2 z,(+-v,.2)=0 (1.18) 

Taking the structure of solution (1.18) and expressions (1.9) and (1.11) into account, we obtain, after 
rather lengthy computational procedures (integration with respect to ~, taking the properties of even 
and odd functions into consideration), an expression for the work done by the pressure to displace the 
points of the sidewalls 

8A~ +SA z = -  noSu+ nolSU 2 +~ i1~u "2 +m21v'Su+m12u'Sv + 

I 3 
+ / m22~O 2 + m 1'=0 ~" tlj 3~w ('t)2 ] d ~ ,  ~m I ar ~A 2 = -51"I i2  

2 | / 
(1.19) 

The superscript (j) denotes the appropriate derivative of the function with respect to % while l-[l, 2 
is the potential energy functional of the pressure in deformations of the sidewalls. This functional is 
positive-definite with respect to the variables v and w, if one takes into account that the centre line of 
the tread is assumed to be inextensible (the second condition in (1.2) with ~ = 0), 

u = - v ' - ( v " + v ) 2 / 2 - w  '2/2 (1.20) 

Note that the coefficient no is negative and, as will presently become evident, is equal in absolute value 
to the tensile strength of the tread under pressure in the tyre. 

2. T H E  E Q U A T I O N S  OF M O T I O N  

The kinetic energy of the wheel can be represented in the form 

' 

-- , r , +J2a(0+ si. ) +Pr l  r.Z:d  2T maY. X , + 
i=1 0 i=1 

(2.1) 

where md and Jld, J~d are the mass and moments of inertia of the disk about the axes Cx, Cy, respectively. 
The kinetic energy of the tread and the sidewalls is represented in (2.1) by the last term, on the 
assumption that all the mass of the tyre is uniformly distributed about the centre line 10, with linear 
density p. The quantities Zi (i = 1, 2, 3) are the projections of the velocity of a point of the centre line 
of the tread onto the axes of a system of coordinates rotated with respect to the system OX]X2X3 through 
an angle 13 about the 0)(3 axis; they have the form 

21 = )?l cos 13 + "+2 sin 13 - ~[(1 + u) sin × sin 0 + w cos × +v sin × cos O] - 

- rO[(I + u) sin 0 + v cos O] + r(u cos d - 0 sin O) 

22 = -~'1 sin 13 + "~'2 cos [3 + r~[(1 + u)cos O - v  sin O] + 

+ rk[((I + u) sin 0 +u cos O) cos × - w sin ×] + r0[(I + u) sin × cos O - u sin × sin O] + 

+ r(~i sin × sin O + ~i, cos × +t/sin × cos O) (2.2) 

7-3 = )(3 + rk[((l + u) sin O +v cos O) sin x + w cos ×] - 

- r0[(i + u) cos × cos O - u cos × sin O] - 

- r ( t i cos×s inO+ v c o s x c o s O - f f s i n × ) ;  O = 0 + t p  

The equations of motion and boundary conditions at the as yet unknown contact region are obtained 
using the Hamilton--Ostrogradskii variational principle. To that end, one needs expressions for the work 
done by the external forces and torques applied to the disk of the wheel (Fig. 1) in the virtual 
displacements, namely 
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fiAt: = F([3)~iX I + F([3 - rt / 2)8X 2 - PSX 3 + MtSx + M2930 + 

+ (M 2 sin × + M 3 cos ×)813, F(13) = F l cos 13 - F 2 sin ~ (2.3) 

Suppose the wheel is rolling without slip. This means that the velocities of  points on the centre line 
of the tread in the contact region, L1 = [tPl(t), tP2(t), equal zero, that is, Zi = 0 (i = 1, 2, 3). These 
conditions follow from the holonomic constraints represented by the last three relations in (1.6). The 
virtual displacements satisfy the equalities 8Zi = 0 (i = 1, 2, 3), obtained from (2.2) by replacing the 
time derivatives with the variations of the appropriate functions, and the work of the reactions applied 
to the centre line is 

3 3 2 

~,SN, = I E~t,(~,t)SZ, dtp+ Etx,kSZik (2.4) 
t=l  L I i=1 i,k=l 

where ~t i, laik (i, k = 2) are undetermined Lagrange multipliers - the components of the reaction to the 
constraints. The subscript k denotes the reaction of the constraints and the virtual displacements at the 
boundary points of the contact region. Equation (2.4) contains no terms ~3k, since it is assumed that 
the components of the reactions of the cbnstraints along the 02(3 axis vanish at the boundary points of 
the contact region. 

Yet another constraint on the boundary of the contact region of  the tyre, following from (1.1) and 
(1.4), is that the vector directed along a fibre of the tyre and normal to its centre line is orthogonal to 
the O X  3 axis, that is, 

Z4k = sin × - w~,'cos × sin O~ + w~, cos×cosO k = 0 (2.5) 

W/~ = w(q)k,t); k = !,2 

The work of the reaction of this constraint (the torque about the OXl axis) in virtual displacements 
will be 

2 

8N 4 = Zp.4kSZak (2.6) 
k=l  

where ~4k and 8Z~ are the projection of the torque onto the centre axis of the tread at a boundary 
point of the contact region and the corresponding virtual displacement. 

At the extreme points of the contact region one must consider the torque of the constraints about 
the OX3 axis. These reactions are due to the orthogonality of the tread fibres perpendicular to its centre 
line, the OX1 axis. Taking formulae (1.1) and (1.4) into account, we express these conditions in the form 

0R3(t0k'0't) 1~ = 0 ~  Zsk =-sinl3cosx + w"t (cos flcosOt -sinl3sin xsin 0k) + 

+w~,(cos[3sinO~+sinl3sinxcosOk)=O, k= l ,2 ,  Ok=O+tp  k (2.7) 

We will denote the Lagrange multipliers corresponding to constraints (2.7) (the projections of the 
torques onto the OX3 axis at the extreme points of contact) by I.tsk (k = 1, 2) and express their work in 
releasing the constraints in the form 

2 

fN5 = ZbtskSZsk (2.8) 
k=l  

where ~Z5k is the variation of (2.7). 
As constraints for the points of the centre line 1o of the tread outside the contact region we take the 

condition that it be inextensible (the second relation in (1.2) with ~ = 0) 

= (J + .  , )2 + + w , z  = l (2.9) 

Accordingly, when eliminating these constraints one must take into account the work they perform 
in virtual displacements 
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~N 6 = ~.(cp, t)~Z6dcP, /.2 =[~p2,2~+q)l] (2.10) 
L2 

where  ~. is an unknown Lagrange multiplier. 
Let  us write the Hamil ton-Ost rogradski i  variat ional principle in the form 

t2 3 6 
~(~)T+~)A r + ~'.~)A, + ~,~)N,)dt = 0  (2.11) 
tl t= I i= I 

The  corresponding variables in (2.11) are 2n-periodic in ~0 and the domain  of  integrat ion [fi, t2] tA [%, 
% + 2re] in (2.11) is divided by the curve ~ = ~02(t) into two parts, [q, t2]tAL1 and [q, tz]t.JL2, in each 
of  which Green ' s  formula is applicable. The  result is the following system of  equat ions 

2 
- d r  T +  F(13)+ ~(~t c ° s~ - / ' t 2  s in[])d~+ ,~,(~tl~ coslS-~t2~ sin13) = 0 

dt x~ L~ ~=~ 

- V x T +  13+ + ~(~ti sin13+~H cosl[~)dtp+ Y.(kt~ sin13+lXEk cos[~) = 0  
LI k=l 

- - ~ V A , 3 T -  P +  J}.t3d( p = o 
Lt 

V . r -  + X =o 
LIi= I 0 ~  t=1.2,4,5 k=l 

V o T -  VoT+M:~+ ~ E P - i ' - ~ q  )+ Y~ Z ~ i t  • = 0  
Lit=l i=1.2.4.5 k=l ~ 0  

V ~ T -  V f ~ T + M 2 s i n × + M 3 c o s × +  ~ Z P - i ' - ~ P  + Z ~,[.t,k . = 0  
Lit=l t=1,2.4,5 k=l i)13 

~tlr cos O + I.t2r sin × sin O - I.t 3r cos × sin O - n o - no~u + n I ~u" + 

+ m 2 ( u " - v ' ) - m 2 1 u ' = O ,  ~p e L I =[tPl(t),q)2(t)] (2.12) 

d 
V uT - ~t V uT - n o - nolu + nl lu" + m2(u" - v  ') - m21v ' + ~,(1 + u +v ") - 

-[~,(u'-v )]'=O, tP~L2=[q)2( t ) ,  tp;( t )+2rt] ,  m2 = 2plr 2 

[r3[/J]k ~0 k - (-I)k[~,(u" - v  )]Irk) + (m2 -t- r/i i )[Ut]k + 
+r(l.tlk cos Ok + ~ k  sin ×sin Ok) = 0, O~ =0+tp~ ,  k = l , 2  

- l ~ l r s i n O + l . t ~ r s i n × c o s O - p . 3 r c o s × c o s O - m j 2 u ' - m 2 2 v = O ,  q ~  Li 

V v T - d v v T - m 1 2 u ' - m 2 2 v - [ ~ ( l + u + v ' ) ] ' - ) ~ ( u ' - v ) = O ,  g)~-L 2 

9r3[ O]k(pk -(-I)k[~.(1 +u  +v')}tfk) + r(- la l ,  sinO k +la2, s in×cosO~)  = O; k = 1,2 

P.2rcos×+laars inx+Aw=O,  t p ~ L  I 

( A w = ( m 3 + n 3 3 ) w t 6 ) + ( m 3 - n 2 3 ) w O ) + n 1 3 w " - n o 3 w = O ) ,  m3 =2p13 /3  

V w T - d v , ~ T + A w - ( ~ . w ' ) ' = O ,  t p e L  2 

9r3[fi~]k ~Ok - (-I)k[Lw']ttk) + (m 3 + n33)[w(5)]k + (m 3 - n23)[w"]~ + rl.tzt , cos~ = 0 

~t4k cos x cos O k + l~sk (cos 13 sin O k + sin [3 sin × cos O k ) - (m 3 + n33 )[ w {4) ]/~ = 0 

-~t4k cos×s inOk  +ktsk(cosl3cosOk - s i n 1 3 s i n × s i n O k ) + ( m 3  +n33)[w"]t, = 0; k = 1,2 
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where [f(O)]k = f(Ok + 0) - f (O ,  - 0) is the jump of the function concerned at an end point of the contact 
region. The subscript l ( k )  is used to mark value of the appropriate function at 01 - 0 for k = 1 and at 
02 + 0 f o r k  = 2. 

System (2.12) consists of 12 equations of motion and 10 conditions imposed on the jumps of  the 
functions at the end points of the contact region. Adding the four constraint equations (the last three 
relations in (1.6) in the contact region condition (2.9) outside it), we obtain a dosed system of 26 
equations in the unknowns 

X i , X 2 , X 3 , ~ , × , O ,  l a i ( i = l , 2 , 3 ) ,  t o k , ~ t i , ( k = l , 2 , i = l , 2 , 4 , 5 ) , ~ . , u , u , w  

in the contact region outside it. The determination of the functions u, v and w must also take 
into consideration the conditions of their continuity at the boundary points of the contact region, which 
follow from the conditions for the existence of the functionals of the potential energy of the pressure, 
namely 

[u] k =Iv]l ,  = [ w ] ,  =[w']~  =[w"]/ ,  =0, k = i , 2  (2.13) 

3. E Q U I L I B R I U M  OF T H E  W H E E L  A N D  T H E  STATIC 
C H A R A C T E R I S T I C S  OF T H E  T Y R E  

If  the wheel is equilibrium, all quantities that define its position and the deformation of the tyre, as 
well as the Lagrange multipliers, the external forces and torques applied to the disk, are independent 
of the time. Suppose in equilibrium 0 = 0, to • [to1, to2], Let  us assume that in equilibrium the quantities 
X1, X2, X3 - r, 13, ×, to - n/2, toz - q°l, u, v, w and their derivatives with respect to to are small. In the 
contact region, the angle tO is close to n/2.  Using the substitution tO = n/2 + ct, cc • L1 = [cq, ct2], 
Ctk = tOk - ~2,  we rewrite Eqs (2.12), ignoring quantities of the second and higher order of smallness 
in these variables. The result is 

2 
Ff -F21 + .f hda+ Y(I-hk - hkl3) =0 

L I k=l 

2 

 I3+F 2 + J'la2aa+ Y.( hkl3+ t2k)= 0 
L I k=l 

P = J ~t3do~ 
LI 

2 
M I + ~l.12rdcx+ Y_(~t2kr+~ta,)=O 

l, I k=l 

2 

M 2 - J ~ f r d o c -  Y~(~lkr+~3~4k)=O 
LI k = l  

2 

M2× + M 3 + y~[$.l.lkX 2 -[..I.21c(Oclcr+ XI) -  ~/5k ] = 0 
k=l 

- ~ l  r(x + ~2r'x - p.3r = n o - njz - m 2 + (X3r  -I - l)(nol - m21 + nlj), 

- ~ z r + l . . t 3 r ( x = m t 2 0 c + ( m 1 2  + m 2 2 ) X t r  -I ,  o t E L  t 

~t2r + ~t3to¢ = - n o 3 ( x  + X2r-I  ), oL E L I 

- n  o - nolu + n I lu"  + rn2(u" - o  ") - rally" + ~. - [~,(u" - u  )]' = 0, 

(-I)k [~,(u" - v  )]/~k) - (m  2 + nl i)[U']k + r(I-tlk~k -- P-2kx) = 0 

- m 1 2 u ' - m 2 2 v  - ~.' - ~.(u'--u ) = 0, a E L  2 

(-I)~ [~.}l~x I + rl.tlh =0,  k = l , 2  

OC~ L, 

(3.1) 
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(m s + n33)w (6) + (m 3 - n23)w (4) + hi3 w"  - no3w - (~,w')" = 0, Ot E 1- 2 

- ( -1 )k  [~,w'IMo + (m 3 + n33)[w(5) ]k + (m 3 - r123)[W"]k + rl.t2k = 0 

laakOt k - I.tSk + (m 3 + n33)[w(4)] k = 0 

~4k + ~5kO~k - -  (ms + n33 )[W"]k = 0, k = l, 2 

Rela t ions  (3.1) y ie ld  kq, ~2 and ~t 3 in the  contac t  reg ion  L1 in the  fo rm 

p q r  = (n i l  + m 2 - n o - ml2 )Or - (mt2  + m 2 2 ) X l r  -I 

tx2r = (no - nLl -- m2)× - %3(× + X2r -j ) (3.2) 

p3r  = - n  o + njj + m 2 - (no~ - m21 + nl j ) (X3 r~l - l) 

Put t ing ~ = no + Z1, where  ~-1 is a quant i ty  o f  the  first o r d e r  of  smallness,  and using the l inear ized relat ion 
(2.9) u = - v ' ,  we can express  the  equa t ions  def ining the de fo rma t ions  of  the  cen t re  line of  the  t r ead  
in the  form. 

(no~ + n  o - m  2 - m 2 j ) u ' + ( n  0 - n i l  - m 2 )  u "  + ~, 1 = 0  

(m12 + n o )v " +  (n  o - ra22 )V - ~ ;  = 0 

(m3 + n33 ) w(6) + (m3 - n23 ) w(4) + (hi 3 - no ) w ' t  - no3 w = 0 

These  equa t ions  have the fol lowing solut ions  in the  doma in  L 2 

(3.3) 

4 6 
u (or) = ~, (7, exp(p ia ) ,  w(t~) = Y. Ej exp(q/tx), ct e L 2 (3.4) 

i=1 j=l 

where  Pi (i = 1 . . . . .  4), qj ( j  = 1, . . . ,  6) are  the  roots  of  the charac te r i s t ic  equa t ions  

aop 4 + a j p  2 + a  2 = 0  

o 0 = n  o - m  2 - - n i l ,  a I = 2 n  0 +nol  - m  2 +m12 -m21,  a 2 = n o  -m22  
(3.5) 

boq 6 + b l q  4 +b2q 2 + b  3 = 0  

b 0 = n s 3 + m  s , bl = m  3 - n 2 3 ,  b2 = n l 3 - n o ,  b 3 = - n o 3  

The  roo ts  of  charac ter i s t ic  equa t ions  (3.5) have the p rope r ty  

Pl = -P3 ,  P2 = - P 4 ,  ql = -q4 ,  q2 = -q5 ,  q3 = -q6  

To d e t e r m i n e  the arb i t ra ry  coefficients  G i and Ej in (3.4), we wri te  condi t ions  (2.13) as follows, to 
within te rms  of  the  first o r d e r  of  smal lness  

4 4 
~ , G  i exp(2np, ) = ~ , G  i = XI r-I 
l=l ~=1 

4 4 
Y. G,p, exp(2gpi  ) = ~.G,p,  = I - X3 r-I 
l=l /=l 

6 6 
Y. Ej exp(2nqj )  = ]~E  1 = - ×  - X2 r-I 

J : l  /=l 

6 6 
~, Ejq j  exp(2nqj  ) = E Ejq  I = ~J 
j=t j=l 

6 6 
Y. Ejq~ exp(2rtqj)  = ~ E j q ~  = 0  
J=l 1=I 

(3.6) 
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These relations consti tute two systems of  linear algebraic equations of  the fourth and sixth order  with 
constant  coefficients in the variables G i and E~, respectively. Solving them, we find 

G, = (-I) 'exp(-np,)Sh(rcPl)sh(rcP2)[-plp2p'~lBiXir -I - B z ( X 3  r-~ -1)1. i =  I .....  4 (3.7) 
2 sh(gp~ ) 

BI -I = ch(/cPl )P2 sh(rtP2 ) - ch(~P2)PJ sh(gPl ) 

B2 ~ = sh(~Pl )P2 ch(rl:P2 ) - sh(~p2 )Pl ch(TtPl ) 

Ejexp(rcqj)=Pt, .(×+Xzr-I)+Qt. ,~J ( j , l ,m) 

Ej+3exp(-rcq j )  = Pt.,(×+X2r-I)-Qt, , ,~ ( j . l .m)  

I 
Ptr,, = ~ qtq,,, [qt ch(;tqt ) sh(nq,. ) - qm ch(rcqm ) sh(rr.ql )] 

I 
a , .  = 2A 2 sh( qt) sn(rcq,.)(q? - 

] ch(ff.ql) ch(rcq2 ) ch(/~q3) [ 

a t  = sh(rtql) q~ sh(rcq2) q3 sh(r"q3) I, 

]q~ch(nq,) q~ch(~q2 ) q32ch(nq3)[ 

I sh(rcql ) sh0tq2) shf/tq3) [ 

A2=lqleh(Ttql)  q2ch(~q2) q3ch(r~q3)[ 
[q~sh(~qi) q22sh(~q2)q2sh(~q3)[  

(3.8) 

where the symbol (j, l, m)  denotes the set of three equations obtained by cyclic permutation of  the indices: 
(1, 2, 3) -~ (2, 3, 1) --> (3, 1, 2). 

The conditions imposed on the jumps in (3.1) are 

4 

~'. G, exp(27cp,~ Ik )[(m2 + nil - no)pt 2 - no] = -(m2 + nil )XIr-I _ (m 2 + nil _ no)~k 
t=[ 

4 

G, exp(2~p,51k )[(n o - nzj - m 2)p3 + (n o + no I _ m2 _ rnzl )] _ no = (_ i)k r111k 
t=] 

6 

E E 1 exp(2r~q,~Slk )[(n33 + m3 )q~ + (m3 - n23)q3 _ noq, ] = (_l),+l r~2k 
1=1 

(3.9) 

6 
Y~ E~ exp(2rcqj~lk )(t/33 + ra3)q~ = (--l)kt. t4k 

)=1 

6 
E: exp(27tqj51k )(n33 + m3)q: = (-1)k115,, k = 1,2 

1=1 

It is now necessary to substitute the expressions (3.7) and (3.8) into conditions (3.9) and find the 
relation among the forces, torques,  displacements of  the centre of  the disk and its rotations, as well as 
the size and boundar ies  of  the contact region. As a result we obtain, to within quantities of  the first 
order  of  smallness inclusive 

~I + ~II + ~I-12 = O, F 2 + 1 1 2 1 + ~ 2 2 = 0 ,  P=r-I(nzl+m2-no)(~2-oq) 
2 

MI =--~,(112kr+114k) , M2 = (111] +11r2) r, M3 =~t51 +1152 
k=l 

(3.10) 

~ 2 -Otl = 2 ( P 2 - p 2 ) sh( ~pl ) sh( rcP2 ) B2 (! - X3 r-I ) 

RI +R2 = 2(plp2B21BI - I)XI r-j 
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and further 

FL = 2(n0 - nil - m2)(Pt 2 - P~)PlP2 sh(ItPl)sh(gp2)BIXt r-2 

F z = -4 r - '  ~ {qj sh(nqj)[(n33 + m3)q 4 + (rn 3 - n22)qy - no]P~, . }(× + X2r -t ) 
(yd,m) 

P= r-J(nlt +m 2 -no)(O~ 2 - o q )  

Mt = _rF2 + 4(n33 + rn 3) ]~ {q3 sh(r,/; )Ptm } (× + X2 r'-I ) 
(y,l,ra ) 

M2 = - r F  I , M3 =---4(n33 +m3) Y.{q~sh(nqj)Qtm}~ 
( ],l,ra) 

(3.11) 

where summation over (j, k, l) means summation over the cyclic permutations of the indices: (1, 2, 3) 
(2, 3, 1) ~ (3, 1, 2). 

It follows from relations (3.11) that, in the case of equilibrium of the wheel with the tyre, the force 
F1 and torque M2 are related to one another and depend on the displacement of the centre of the disk 
with respect to the OX1 axis, while the force F 2 and torque M1 are also related and depend on the 
inclination of the middle plane of the disk and the displacement of its centre along the OX2 axis. The 
width of the contact region is proportional to the magnitude of the load P, and its displacement along 
the OX1 axis is proportional to the force F1. We have thus found all the characteristics of the deformed 
state of the tyre in an equilibrium position, namely, the conditions imposed on the forces and torques 
applied to the disk of the wheel, and their magnitudes, the contact region of the tyre with the plane 
and its position, and the shape of the tyre outside the contact region. 

4. R O L L I N G  OF A W H E E L  WITH CONSTANT V E L O C I T Y  

If there is no slip in the contact region of the tyre tread with the plane, the path of the wheel on 
the contact plane during the rolling may be represented as a straight strip left by the tread of the 
tyre. The complete system of equations describing these motions is represented by the appropriate 
relations in Section 2. Among these motions there may be steady rolling motions of the wheel, 
when the centre of the wheel moves in a straight line parallel to the OX~ axis at a constant velocity and 
the angles [3 and × are constant (fixed swivel and tilt of the wheel). This motion is described by the 
relations 

X~=c, x 2=const, x 3=const, I~ =const, x=const ,  0=  

q%(t) = - fL  o~ = q0+f2 t -~ /2  (u ,v ,w)(~p, t )=(u ,v ,w)(oL)  

la,(q0,t)=l.ti(ot), i=1,2,3; I.t,k =const, ot k = ~ P k ( t ) + f ~ t - r t l 2 = c o n s t  

i = 1,2,4,5; k = 1,2; ~.(q~,t) = ~(ct) 

(4.1) 

The investigation of this steady motion is largely similar to that of the equilibrium of the wheel with 
the tyre as was done in Section 3. To fix our ideas, let us set 

0 = ~ t ,  X I = ct + z~( I , c = ~ r  (4.2) 

The last relation in (4.2) follows from the inextensibility of the tread and the condition that the wheel 
is rolling without slip. The first nine equations of system (3.1) remain unchanged, except for the 
replacement of X1 by AX1 (to be done in all the equations of Section 3), while the last eight equations 
become 

g o ( l + U - U "  + 2 V ' ) - n o  - n o l U  +nl lU"  + 

+ m 2 ( U ' - V ' ) - m 2 j V "  + ~ . - [ L ( U ' - V ) ] ' = O ,  o ~ I -  a 

g0[U']k + (-I)k [~.(U ' -  V)]tck~ - (m 2 + nll)[U']k + r(l.t ikO~ k - I.t2k×) = 0 
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g o ( V - V " - 2 U ' ) - m l 2 U ' - m ~ 2 V - L ' - L ( U ' - V ) = O ,  c t e L  2 

g0[V']k +(--1)k[L]/t~)+r~tlk =0, k =1,2, go =P r3~2 

-goW"+(m3 + n33)W (6) + ( m  3 -- rt23)W (4) +nl3W"-no3W-(~,W') '= O, (x E 1_, 2 

-go[W']~ -(--I)k[~,W'lt~k)+(m3+n~3)[W(5~]k +(m 3 -n23)[W"] k + rl.12k = 0  

,t-t 4ktXk -- ~St~ + (m3 + n33)[Wt4)]k = 0 

~.14k -['~SkO{k -(m3 + n33)[W"], =0; k = l,2 

(4.3) 

Putting ~, = n o -go + X1 in the first, third and fifth equations of system (4.3), we obtain a system of 
the same form as (3.3). Note that in this case the stress in the tread of the rotating wheel is increased 
owing to the centrifugal forces added to the internal pressure in the tyre. The solution of the system, 
assuming that the tread satisfies the linearized inextensibility condition U = -V', turns out to be identical 
with solution (3.4), with the same values of the roots of characteristic equations (3.5). Equations (3.6) 
have the same form as before, so that solutions (3.7), (3.8) also remain valid. Conditions (3.9) imposed 
on the jumps are replaced by the corresponding conditions from (4.3). They may then be expressed in 
the form which is obtained from (3.9) by replacing X1 with AX1, adding go to the coefficients of Gi and 
AX~ in the first equation, adding -goP, to the coefficient of G,, adding (2 -)(3 r-l) to the left-hand side 
of the second equation, and, finally, replacing-noqj with -(no-go)q: in the third equation. 

In this steady rolling of the wheel, all the forces and torques applied to the disk are independent of 
time. The final summary of the relations among the forces, torques and variables defining the motion 
of the system is represented by the last two relations in (3.10) with X1 replaced by AX 1 in the second 
relation, as well as relations (3.11), also with Xx replaced by AX1 and the coefficient no replaced by 
no -go in the formula for the force F2. 

Thus, for the steady rolling motion considered here of a wheel with a reinforced tyre, we have found 
all the parameters that define the shape of the deformed tyre, the contact region and its position, and 
the forces and torques applied to the disk of the wheel. Steady motion will exist when all forces and 
torques are constant and are moreover subject to the modified conditions (3.10) and (3.11). This means 
that the magnitudes of the forces F1 and Fz are proportional to those of the torques M2 and )1/11, 
respectively. The size of the contact region is proportional to the load P, and its displacement along 
the OX1 axis is proportional to the force F~. The swivel × of the wheel and its tilt 13 generate torques 
M1 and M3 applied to the disk of the wheel. This property enables one to eliminate clearances in the 
suspension of an automobile during its motion and to improve its controllability. 
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